Por favor, use este identificador para citar o enlazar este ítem: http://dspace.udla.edu.ec/handle/33000/11041
Tipo de material : bachelorThesis
Título : Herramienta de reconocimiento facial con técnica de visión computacional 2D
Autor : Escobar Loayza, Jefferson David
Tutor : Hernández Perdomo, Wilmar
Palabras clave : BIOMETRÍA;RECONOCIMIENTO FACIAL;VISIÓN POR COMPUTADORA;INTELIGENCIA ARTIFICIAL
Fecha de publicación : 2019
Editorial : Quito: Universidad de las Américas, 2019
Citación : Escobar Loayza, J. D. (2019). Herramienta de reconocimiento facial con técnica de visión computacional 2D (Tesis de pregrado). Universidad de las Américas, Quito
Resumen : En esta tesis se ha diseñado un sistema de reconocimiento de imágenes por visión artificial, centrado en rostros de personas. Aquí, se ha estudiado la complejidad de dos algoritmos que han demostrado su eficiencia y robustez en aplicaciones de reconocimiento de rostros usando visión por computador. Además, se ha implementado un sistema con tal propósito basado en dichos algoritmos y la propuesta de mejoras en los mismos. Los algoritmos mencionados anteriormente son: 1) El método Autorostros (Eigenfaces) y 2) El método Análisis Discriminante Lineal (Fisherfaces). Ambos métodos son capaces de detectar rostros por comparación con imágenes guardadas en bases de datos, y entre las características fundamentales de dichos métodos podemos destacar lo siguiente: el método de Autorostros se encarga de comparar con una única imagen de la persona que sirve de referencia y que se encuentra guardados en la base de datos; mientras que el método Análisis Discriminante Lineal realiza la comparación contra un promedio de imágenes de referencia guardadas en la base de datos. En esta tesis se ha podido demostrar experimentalmente que el primer método necesita menos tiempo de procesamiento, pero es menos robusto; mientras que el segundo método requiere un tiempo de procesamiento más alto, pero es más robusto. Por lo que, este último es el apropiado para trabajar en entornos afectados por la contaminación y señales no deseadas. Con los antecedentes expuestos, con el objeto de mejorar la robustez del método Autorostros, se propone crear una base de datos con un conjunto de fotos de referencia de cada uno de los rostros a identificar, buscar una medida de la tendencia central de dichas fotos para cada rostro y tomar esta medida como la nueva referencia. Sin embargo, incluso haciendo esto, los resultados siguen siendo inferiores al método Análisis Discriminante Lineal. Por lo tanto, si se desea un sistema de identificación rápido y se tolera un determinado margen de error, el método recomendado es el Autorostros. Por otra parte, si se desea implementar un sistema de procesamiento robusto, el método apropiado es el Análisis Discriminante Lineal.
Descripción : In this thesis an image recognition system has been designed by artificial vision, centered on people's faces. Here, we have studied the complexity of two algorithms that have demonstrated their efficiency and robustness in face recognition applications using computer vision. In addition, a system has been implemented for such purpose based on said algorithms and the proposal of improvements in them. The algorithms mentioned above are: 1) The method Autorostros (Eigenfaces) and 2) The method of Linear Discriminant Analysis (Fisherfaces). Both methods are able to detect faces by comparison with images stored in databases, and among the fundamental characteristics of these methods we can highlight the following: the method of Autorostros is responsible for comparing with a single image of the person who serves as a reference and that is stored in the database; while the Linear Discriminant Analysis method performs the comparison against an average of reference images stored in the database. In this thesis it has been possible to demonstrate experimentally that the first method needs less processing time, but is less robust; while the second method requires a longer processing time, but is more robust. Therefore, the latter is appropriate for working in environments affected by pollution and unwanted signals. With the above background, in order to improve the robustness of the method Autorostros, it is proposed to create a database with a set of reference photos of each of the faces to identify, find a measure of the central tendency of these photos to each face and take this measure as the new reference. However, even doing this, the results are still inferior to the Linear Discriminant Analysis method. Therefore, if a rapid identification system is desired and a certain margin of error is tolerated, the recommended method is the Autorostros. On the other hand, if you want to implement a robust processing system, the appropriate method is Linear Discriminant Analysis.
URI : http://dspace.udla.edu.ec/handle/33000/11041
Aparece en las colecciones: Ingeniería en Electrónica y Redes de Información

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
UDLA-EC-TIERI-2019-12.pdf4,63 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons