

FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS

ANÁLISIS EMPÍRICO DEL IMPACTO DE LAS POLÍTICAS DE CONTROL DE NATALIDAD SOBRE EL CRECIMIENTO ECONÓMICO. (1971-2011)

Trabajo de Titulación presentado en conformidad con los requisitos establecidos para optar por el título de Economista

Profesor Guía Luis Antonio Vaca

Autora

Jennifer Leslie De la Torre Farías

Año 2017

DECLARACIÓN DEL PROFESOR GUÍA

"Declaro haber dirigido este trabajo a través de reuniones periódicas con el estudiante, orientando sus conocimientos y competencias para un eficiente desarrollo del tema escogido y dando cumplimiento a todas las disposiciones vigentes que regulan los Trabajos de Titulación"

Luis Antonio Vaca Economista C.C.1712949534

DECLARACIÓN DE AUTORIA DEL ESTUDIANTE

Declaro que este trabajo es original, de mi autoría, que se han citado las fuentes correspondientes y que en su ejecución se respetaron las disposiciones legales que protegen los derechos de autor vigentes.

Jennifer Leslie De la Torre Farías C.C. 171872144-0

AGRADECIMIENTOS

Agradezco a la Universidad de las Américas, por hacerme sentir cómoda en sus instalaciones. A mi tutor de carrera Econ. Patricio Vivero, guiarme por У aconsejarme cuando más lo he necesitado, más que una guía ha sido un amigo. Agradezco a mi tutor de esta investigación Econ. Luis Antonio Vaca, por su carisma para enseñar, por ser una guía, por hacer que lo más tedioso sea algo agradable. A mis compañeros, quienes han sido un apoyo en cada etapa de este camino.

DEDICATORIA

Dedicado a mis abuelos; mi madre, quienes me han brindado su apoyo tanto económico como moral para seguir estudiando y poder alcanzar el objetivo deseado y así poder ser un orgullo para la familia. A mi esposo y a mi hija, quienes han sido mi inspiración para alcanzar la meta y brindarles un futuro mejor.

RESUMEN

Dentro de las teorías aplicadas en la búsqueda del bienestar y crecimiento económico en los años 70, se resaltó la posibilidad de ejercer políticas de control de natalidad en pos de dicho objetivo. Esta investigación examina el impacto de las políticas de control de natalidad sobre el crecimiento económico utilizando un modelo de panel de datos de cuatro países en el periodo de 41 años (1971-2011). Los países que realizaron control de natalidad fueron China, Corea del Sur y México. A la par, muchos otros países de condiciones económicas similares no las aplicaron. Esta realidad permite hacer un modelo comparativo entre países que aplicaron una política de control de natalidad y países que no la aplicaron; permitiendo observar si hubo un efecto de la misma en el crecimiento económico. El resultado de la investigación afirma que las políticas de control de natalidad no fueron significativas para el crecimiento económico.

ABSTRACT

Among the theories applied in the pursuit of well-being and economic growth in the 70s, it highlighted the possibility of exercising birth control policies in pursuit of that objective. This research examines the impact of birth control policies on economic growth using a panel data model of four countries in a period of 41 years (1971-2011). The countries that applied a birth control policy were China, South Korea and Mexico. At the same time, many other countries with similar economic conditions did not apply. This fact allows us to make a comparative model between countries that implemented a policy of birth control and countries that did not applied; allowing to observe if there was a policy effect on economic growth. The result of the research remark that birth control policies were not significant for economic growth.

ÍNDICE

INTRODUCCIÓN	1
Revisión del estado de la situación del problema	5
Análisis empírico	15
CONCLUSIONES Y RECOMENDACIONES	21
REFERENCIAS	23
ANEXOS	27

INTRODUCCIÓN

La relación entre crecimiento económico y población ha sido un tema recurrente en la literatura económica. A partir de los años sesenta, analistas, gobernantes y la opinión pública, empezaron a reflexionar sobre los efectos de las altas tasas de crecimiento poblacional en el crecimiento económico. Particularmente, se detectó que países que tenían menores grados de desarrollo como los de Centro América, entre otros, fueron aquellos que se dieron a destacar con mayores tasas. Estudios como el de la escuela Malthusiana, comprobaron que el crecimiento poblacional tiene un efecto negativo sobre el crecimiento per cápita. Frente a esta problemática, se planteó que la única forma de frenar este impacto era que los países en desarrollo realizaran grandes programas dirigidos al control de la natalidad (Urzua, 1979).

La creencia que el crecimiento de la población afecta negativamente al crecimiento económico se deriva del pensamiento de Malthus en términos per cápita. La escuela Malthusiana afirma que dado los recursos limitados (incluido la tecnología), el crecimiento de la población dificulta el crecimiento económico. Por otro lado, la escuela de pensamiento neoBoserupian (Boserup, 1981), es más optimista; ya que discute que el crecimiento económico se puede beneficiar si la población tiene un efecto de escala. Dentro de su investigación cuestionan el tratamiento que la teoría Malthusiana da al progreso tecnológico, considerándola como una variable exógena (limitada) o difícil de predecir. Una vez que el progreso tecnológico está considerado como una variable endógena derivada en el modelo de crecimiento, el rol de la población en el crecimiento económico se hace neutral e incluso hasta positivo. (Romer, 1986; Romer, 1990; Jones, 1999).

Adicionalmente, existe una serie de estudios empíricos que demuestran que entre crecimiento económico y crecimiento poblacional existe una relación negativa, entre los cuales se puede mencionar: (Kellye & Schmidt, 2005; Brander & Dowrick, 1994; Barlow, 1994; McNicoll, 1984; Hazledine & Moreland,

1977; y Coale, Population Trends and Economic Development, 1986). Sin embargo, la mayoría de estos análisis empíricos no pueden probar un efecto causal negativo del crecimiento de la población o tasa de natalidad sobre el crecimiento económico (Simon, 1989).

No obstante, no está claro un efecto causal negativo importante. Un ejemplo de dicha contradicción es el baby boom (tasa de natalidad), el cual fue conocido como un fenómeno demográfico que hizo notar un alto crecimiento de la natalidad. En países como Gran Bretaña y Estados Unidos su efecto fue más alto que en otros países de Europa. Estos países alcanzaron altos niveles de crecimiento económico sin poder explicar claramente cual variable genera el efecto sobre la otra. Así, parte del incremento de la tasa de natalidad en esos dos países se explicaba por mejores oportunidades de trabajo para hombres y mujeres, dando como resultado que en hogares optaban por tener dos o tres hijos. (Urzua, 1979)

De igual forma, Kelley (1988), muestra que no se encuentra ninguna conclusión definitiva desde el cuerpo de pruebas empíricas. La falta de una conclusión empírica se debe en gran parte a que existe una dificultad en identificar el efecto causal de la tasa de natalidad o del crecimiento de la población en el crecimiento económico. Una simple regresión de crecimiento no puede probar causalidad porque la tasa de natalidad o crecimiento de la población en la regresión de crecimiento puede ser endógena (Kelley, 1988). Por ejemplo, el crecimiento económico puede afectar la fertilidad: un incremento en el ingreso, se deriva en un incremento en el capital humano de los padres. Para que aumente el retorno de la inversión en el capital humano de los niños, es necesario que el número de niños disminuya (Becker & Lewis, 1973).

La endogeneidad ha sido discutida en la literatura teórica; (Barro & Becker, 1989), quienes utilizaron un modelo para evaluar el costo de la crianza de los hijos, y sobre todo, el impacto de los niveles iniciales de población y stock de

capital. En investigaciones posteriores (Becker, Murphy, & Taruma, 1994; Wang, Yip, & Scotese, 1994), se indica que la fertilidad podría ser endógena al crecimiento económico incluso en ausencia del efecto del capital humano, muestran que con crecimiento, el salario real de la mujer aumenta; lo cual hace que disminuya la fertilidad (Mankiw, Romer, & Weil, 1992; Temple, 1999; Galor & Weil, 1993).

Para definir las tasas de natalidad cabe recalcar que los niños son vistos como un bien duradero, que produce ingresos, principalmente ingresos psicológicos a padres. La fertilidad se determina según los ingresos, costos de los niños, el conocimiento, incertidumbre, y los gustos. Un aumento en los ingresos y una disminución en el precio aumentarían la demanda de niños, aunque es necesario distinguir entre la cantidad y calidad de los niños exigidos. La calidad de los niños está directamente relacionada con la cantidad gastada en ellos (Becker G., 1960).

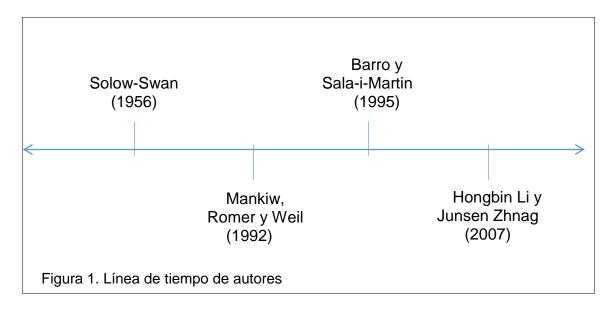
(Watkins & Walle, 1983 y Coale & Hoover, 1958), consideran que existe una tasa óptima de crecimiento poblacional para alcanzar un adecuado crecimiento económico. En función de ello, un excedente de población es un freno para el crecimiento económico y por ende para el desarrollo.

Durante la época de los sesenta, los gobernantes de estado en países desarrollados como Estados Unidos y Japón, pensaban que para disminuir el crecimiento poblacional había que resolver los problemas de pobreza. Estados Unidos, no implementó una política de control de natalidad; sino que tomaron acciones para frenar la natalidad, como la repartición de anticonceptivos. El presidente de dicho país Lyndon B. Johnson en ese entonces solía decir que menos dinero invertido en natalidad rendía más que invertir en desarrollo (Fucaraccio, 1994).

En 1974 se realizó la Conferencia Mundial de Población con el fin de tomar un plan mundial de acción que permita resolver las altas tasas de crecimiento demográfico. En dicha conferencia se aprobó por unanimidad el Plan de Acción Mundial de Población (Urzua, 1979); que consistía en la repartición de anticonceptivos. La finalidad de este plan de los países en desarrollo era que así como sucedió en Estados Unidos y Europa, la transición demográfica los llevaría a un crecimiento económico y por consecuencia al desarrollo (Barzelatto, 1998).

Paralelamente, en Filipinas se desarrolló un experimento llamado BACHUE (1976); el cual era un modelo para simular la planeación demográfica, económica y social. Una de las conclusiones más relevantes encontradas en las relaciones que existen entre el crecimiento económico y el crecimiento poblacional, fue que la disminución acelerada de la natalidad no es solución para resolver problemas económicos (Rodgers, Hopkins, & Wery, 1977).

En resumen, altas tasas de natalidad pueden causar un incremento en la tasa de crecimiento poblacional que dificulta mantener la producción per cápita en algunos países. También, las altas tasas de natalidad significan una alta proporción de niños dependientes incapaces de producir pero aptos para consumir en el mediano y corto plazo (Bodrova, 1973). De acuerdo con Stephen Enke (1966) es más efectivo para la economía invertir en programas que disminuyan la natalidad ya que su costo asociado sería menor que si se invertiría en empresas con el fin de aumentar la producción nacional. Este problema discutido y analizado con una Cobb Douglas por Enke era más sostenido por países con un menor desarrollo. Es por esto que se empezaron a adoptar políticas de control de natalidad para acelerar o mejorar el crecimiento económico en términos per cápita (Enke, 1966).


Países asiáticos; entre otros, con altos niveles de población no podían esperar algún fenómeno natural para que sus tasas disminuyeran. Es decir, vieron que las tasas de mortalidad disminuyeron a lo largo del tiempo (producto de avances médicos y progresos en la calidad de vida), y en cambio, la fertilidad es una variable determinante para la evolución de la población

(Pritchett, 1994). Es por esto que en algunos países adoptaron políticas de control de natalidad con el fin de acelerar el cambio en el nivel poblacional para tener un efecto positivo en su crecimiento económico (Pritchett, 1994). Por lo tanto, el propósito de esta investigación es analizar si las políticas adoptadas por distintos países tuvieron impacto sobre el crecimiento económico de los mismos en relación a países con similares características que no aplicaron políticas de control de natalidad. La contribución de este trabajo es verificar desde la parte técnica como las políticas gubernamentales de diferentes países, que buscaban frenar el crecimiento demográfico con el objetivo de generar crecimiento económico, no logran generar crecimiento alguno.

Revisión del estado de la situación del problema

Existen varias teorías sobre el crecimiento económico; y las más relevantes para ésta investigación son aquellas que contienen al crecimiento de la población como un determinante fundamental para el crecimiento. Entre estas se destaca la teoría de Solow – Sawn, la cual fue modificada por Mankiw, Romer y Weil años posteriores.

Además, Barro y Sala Martín hacen otras modificaciones hasta obtener un resultado distinto, que conlleva al modelo Hongbin Li y Junsen Zhang.

El modelo de Solow & Swan (1956), toma en consideración las tasas de crecimiento poblacional, tasas de ahorro y avance tecnológico como variables exógenas; este modelo asume que se tienen dos factores de producción (función de producción Cobb Douglas): trabajo y capital. De esta forma el modelo, considera que la producción está dada por el capital de trabajo y el nivel tecnológico; las cuales crecen exógenamente a una determinada tasa (n + g). Por otro lado, esta teoría asume que se invierte una fracción constante de la producción. Dentro de la investigación se considera al stock de capital (k) y al nivel de producción por cada unidad efectiva de trabajo (y). Es importante mencionar que el stock de capital está sujeto a la tasa de depreciación (d). Por lo que el modelo indica que (k) converge a un estado estacionario.

El estado estacionario de trabajo - capital está relacionado negativamente con la tasa de crecimiento poblacional y positivamente con la tasa de ahorro. El modelo de Solow hace predicciones centrales que se refieren al impacto del ahorro y crecimiento poblacional sobre el ingreso real. Para facilitar la resolución es necesario linealizar la ecuación, para lo cual se utilizan logaritmos. Sin embargo, para realizar este proceso teóricamente se debe asumir que la remuneración de los factores es igual a sus productos marginales. Gracias al proceso de log linealización es posible calcular las magnitudes y los signos de los coeficientes sobre el crecimiento poblacional y el ahorro.

La participación del capital en el ingreso es aproximadamente 1/3; y, el modelo presupone que el ingreso per cápita tiene una elasticidad con respecto a la tasa de ahorro de 0.5; y, una elasticidad con respecto a la tasa de crecimiento de 0.5. Mediante esta investigación, Solow buscaba conocer si en países con mayores tasas de ahorro el ingreso real era más alto y más bajo en países con altas tasas de población, avance tecnológico y depreciación (n + g + d) (Solow & Swan, 1956).

Si se conoce que (d) y (g) son constantes en diversos países, reflejando a (g) como el avance tecnológico, entonces se conoce que no existe ningún dato

que permita estimar la tasa de depreciación, ni tampoco una fuerte razón para esperar que esta varíe de gran manera entre países. Por otro lado, el nivel tecnológico no solo refleja la tecnología si no la dotación de recursos, clima, infraestructura tecnológica, entre otros; los cuales difiere de un país a otro. Es por esto que, se asume que en muchos países la tasa de crecimiento poblacional y la tasa de ahorro son independientes de los factores que intervienen en países específicos desplazando así la función de producción. Es decir, se asume que la tasa de crecimiento de la población y la tasa de ahorro son independientes de por ejemplo un shock específico de un país. Entonces, existen tres razones para asumir esta independencia. En primer lugar, esta presunción no solo se hizo del modelo Solow – Swan, sino de algunos modelos de crecimiento económico como Romer, (1989). En cualquiera de los modelos analizados tanto el crecimiento poblacional y el ahorro son endógenos, pero las preferencias son inelásticas y finalmente la tasa de crecimiento poblacional (n) y la tasa de ahorro (s) no son perjudicadas por un shock específico de un país. En conclusión, con la utilidad inelástica, la tasa de crecimiento poblacional o la tasa de ahorro no se ven perjudicadas por las diferencias permanentes en el nivel tecnológico.

Segundo, las examinaciones informales de la relación entre ahorro, crecimiento poblacional e ingresos realizados por algunos economistas han mencionado que el modelo Solow – Swan no puede dar cuentas de las diferencias internacionales en el ingreso, lo que ha estimulado trabajar sobre teorías de crecimiento endógeno. Por ejemplo, Romer, (1986, 1989) sugiere que el ahorro tiene una alta influencia en el crecimiento poblacional y externaliza acciones positivas para la acumulación de capital. Mientras Lucas, (1988) acierta que el crecimiento poblacional no refleja una variación sustancial en el ingreso real a lo largo de la línea precedida por el modelo Solow – Swan. Lo que quiere decir un presunto fracaso en el modelo de Solow – Swan.

Tercero, el modelo predice las magnitudes y los signos de los coeficientes sobre el crecimiento poblacional y el ahorro; y, se puede calcular si en las estimaciones obtenidas con el modelo de mínimos cuadrados ordinarios existe

un importante favoritismo. Es decir, si el modelo está correcto, la elasticidad de la producción sobre el trabajo con respecto a (s) y (n + g + d) tiene un rango de variabilidad de 0.5 y - 0.5. Si el modelo de mínimos cuadrados ordinarios da como resultado coeficientes diferentes a los valores de variabilidad, el conjunto de hipótesis del modelo de Solow – Swan se puede rechazar.

Los economistas han insistido a lo largo del tiempo en la importancia de contar con capital humano en los proceso de crecimiento poblacional como económico. Esto ha provocado que se generen investigaciones que incluyen esta variable en el modelo Solow – Swan, como las destacadas por Mankiw, Romer, & Weil, (1992). Al incluir el capital humano en la investigación se altera la modelización teórica y empírica del crecimiento económico. En el nivel teórico la introducción de la variable (capital humano) cambia la forma de ver la naturaleza del proceso del crecimiento poblacional. Lucas, (1988), asume que aunque la acumulación de capital físico tiene rendimientos decrecientes; sabiendo que el capital humano permanece constante, los rendimientos de todo el capital reproducible (físico más humano) es constante. Mientras en el nivel empírico, al incluir la variable capital humano se puede modificar el análisis de las diferencias entre países, ya que en regresiones anteriores se omite esta variable.

Una vez agregada la variable capital humano en la ecuación del modelo Solow Swan se puede obtener una fracción del ingreso invertido en el capital humano y en el capital físico. Es decir, la función de producción se aplica para el capital físico, humano y de consumo. En otras palabras, se puede transformar sin costo una unidad de consumo en una unidad de capital humano o en una unidad de capital físico. Adicionalmente, existe una presunción por parte de los autores Mankiw, Romer, & Weil (1992), de que el capital humano se deprecia a la misma tasa que el capital físico; por lo que los dos tipos de funciones de producción son similares. De esta forma, se supone que existen retornos decrecientes en tanto el capital humano como el físico; para garantizar que todas las economías convergan a un estado estacionario.

Para la resolución del modelo se aplicó log linealización, de esta manera se indica como el ingreso per cápita depende de la acumulación de capital humano y físico; y del crecimiento de la población. Con la referencia literaria del modelo Solow – Swan Aumentado se predice coeficientes en función de los factores en análisis del shock de un país específico; en base a la acción del capital físico del ingreso, donde se espera un valor de 1/3. Sin embargo, obtener un valor lógico de la proporción del capital humano es más complicado ya que no se puede tener un valor exacto, porque no se sabe si toda la inversión en capital humano será productiva.

En este contexto se llega a dos conclusiones acerca de las regresiones aplicadas en el modelo con log linealización, donde el capital humano es ignorado: primero, si la fracción de la inversión sobre el capital humano es independiente de las otras variables explicativas, el coeficiente de la fracción de inversión sobre el capital físico sería 1. Una de las razones podría ser por las altas tasas de ahorro que llevan a un mayor ingreso; por ende, el estado estacionario de capital humano llega a un mayor nivel. Es decir, aumenta el impacto de acumulación de capital físico sobre el ingreso; debido a la presencia de acumulación de capital humano. Segundo, el ingreso per cápita disminuye debido a un alto nivel de crecimiento de la población, ya que las cantidades de capital físico y humano deben ser proporcionalmente distribuidas sobre la población.

Pero en este modelo, existe una alternativa para expresar el rol del capital humano en la determinación del ingreso. Una combinación de ecuaciones hace que se obtenga una ecuación para el ingreso en función de la tasa de crecimiento de la población, la tasa de inversión en capital físico y el nivel de capital humano. En dicha alternativa uno de los componentes del error es el nivel de capital humano, porque las tasas de ahorro y crecimiento poblacional influyen en el estado estacionario del capital humano. Entonces, lo que se espera es que el capital humano se correlacione de forma negativa con el crecimiento de la población y de forma positiva con la tasa de ahorro.

El modelo que incluye el capital humano (Solow Aumentado) sugiere que se estime de forma reducida, donde la tasa de acumulación del capital humano es agregada desde las variables explicativas. Otra forma consiste en agregar en las variables explicativas el nivel de capital humano en el estado estacionario. Estas sugerencias predicen distintos términos de crecimiento poblacional y coeficientes de ahorro. Sin embargo, una de las preguntas a responder cuando se utiliza el modelo de Solow – Swan Aumentado es si los datos disponibles del capital humano corresponden al nivel o a la tasa de acumulación de capital.

Solow – Swan es un modelo, donde se restringe el enfoque de la inversión de capital humano en áreas como la educación y salud. Se sabe que medir la variabilidad del capital humano presenta grandes dificultades en la práctica. Pero, cabe recalcar, que se invertía una gran parte de tiempo en educación y esto se traducía a pérdidas de ingresos laborales en los estudiantes. En consecuencia esto era un problema, ya que los ingresos que no se perciben difieren con el nivel de capital humano. Adicionalmente, un gasto explícito en el rubro de educación que realiza el Estado o una familia en términos monetarios es difícil de medir, porque no toda inversión es para fomentar un capital humano productivo.

Para medir la tasa de acumulación del capital humano se usó un aproximado, que calcula el porcentaje de la población que se encuentra en edad de trabajar y que está en la escuela secundaria. Los datos de la fracción de población elegible inscritos en educación secundaria son individuos entre 12 y 17 años. Con estos datos, se multiplicaron por la fracción de la población que se encuentra entre 15 y 19 años; es decir, en edad de trabajar y en edad escolar. Sin embargo, los autores Mankiw, Romer, & Weil, (1992) recalcan que la unión de las dos variables es imperfecta, ya que se omite ciertas características como la educación superior. Pero, la unión de estas variables es una aproximación de la tasa de acumulación de capital humano. En dicha investigación se indica que la inversión en crecimiento poblacional y capital físico puede acercarse a la acumulación de capital humano en sus regresiones. Por lo tanto, hay que considerar que la acumulación de capital humano genera

alteraciones substanciales en el impacto estimado de crecimiento poblacional y acumulación de capital físico en el ingreso per cápita.

En este sentido, el modelo económico de Markiw, Romer y Weil (1992), expone ciertas implicaciones. En primer lugar no existe externalidades substanciales para la acumulación del capital físico. Es decir, la elasticidad del ingreso con respecto al stock de capital físico no es substancialmente diferente de la participación del capital en el ingreso. También se indica que la acumulación de capital físico tiene un impacto más alto en el ingreso per cápita comparada con la acumulación de trabajo. Donde una tasa alta de ahorro lleva a un mayor ingreso, lo que conlleva a un nivel mayor de capital humano eficiente, eficaz y productivo. En otras palabras garantiza un aumento en la productividad. Sin embargo, hay que recalcar que el aumento del crecimiento poblacional hace que disminuya el ingreso porque se reparte sobre la población que trabaja; y muchas veces hace que disminuya la productividad total. En general, los resultados indican que el modelo Solow – Swan Aumentado tiene más consistencia con la evidencia internacional, si se reconoce la importancia del capital físico y humano. Además explica que la diferencia entre educación, crecimiento poblacional y ahorro deben explicarse por las diferencias entre países en el ingreso per cápita. La examinación de sus datos indicó que estas tres variables explican una gran parte de la variación internacional.

El modelo de Mankiw, Romer, & Weil, (1992) busca una explicación de las variables exógenas en el modelo Solow – Swan, como las diferencias en variables de política económica: impuestos, educación, estabilidad. Dichas variables van a determinar cómo las variables originales del modelo pierden importancia para explicar las diferencias entre países.

Es por esto que Barro & Sala-i-Martin, (1995) repite el mismo ejercicio con la inclusión de varios factores estructurales. Utilizando una ecuación de tipo Cobb Douglas, con un producto compuesto por el factor capital y el factor trabajo; cada uno con su respectiva elasticidad. Consecuentemente, es creciente la productividad marginal de los factores aunque a ritmos decrecientes, donde la

función de la producción muestra rendimientos contantes a escala. Adicionalmente, se conoce que una fracción del producto se ahorra y es determinado exógenamente (por los agentes). El capital se deprecia a una tasa constante, lo que significa, que por cada período de tiempo se desgasta una fracción constante de capital.

Descontando la depreciación, la inversión neta es igual al aumento neto del stock del capital físico y esta expresada en términos per cápita (k^n) . Donde la derivada de la razón trabajo – capital con respecto al tiempo es k, es ahí donde se puede obtener la variación del capital en un solo período de tiempo. Dividiendo k en ambos lados en la ecuación hecha por los autores se puede observar la tasa de crecimiento de k. Cuando las expresiones de dicha ecuación se igualan entre sí, resulta ser igual a cero el crecimiento del capital por trabajador, la cual se mantiene en un nivel constante. Explicado así, la economía se acerca al estado estacionario, la cual se conoce como convergencia y esta es el resultado de la derivada de un comportamiento dinámico. (Galvis & Meisel, 2001)

El resultado de la resolución del procedimiento de convergencia significa que el nivel de capital mantiene un vínculo negativo versus la tasa de crecimiento. En otras palabras, las economías con menos recursos tienden a crecer más rápido que las economías más ricas, es decir, es mayor la productividad marginal en las economías con bajos niveles de capital; y, que los factores constan con rendimientos decrecientes.

Para medir este acontecimiento se necesita de un parámetro para saber la velocidad en que la economía se aproxima al estado estacionario, es decir, identificar y analizar la velocidad de la convergencia. Dicho parámetro es el coeficiente de convergencia no condicionada o absoluta, que se obtiene de una estimación econométrica no lineal. Sin embargo, para que exista convergencia no condicionada o absoluta existe la condición de que debe ser positivo el signo del coeficiente del parámetro; caso contrario se obtendría que entre los ingresos per cápita exista divergencia. También, es importante mencionar que

la presencia del parámetro de la convergencia es necesaria para disminuir las disparidades en el Producto Interno Bruto per cápita, aunque no es condición suficiente. (Galvis & Meisel, 2001)

Para realizar un proceso de comparación del modelo entre países, hay que recalcar que la convergencia tiene solo sentido si las economías que se comparan tienen un estado estacionario parecido. Cuando no sucede esto, existe una convergencia condicional, porque cuando se acerca al estado estacionario este se encuentra condicionado por otras variables que actúan como determinantes. Un ejemplo es la tasa del crecimiento poblacional que genera una tendencia a aproximarse al estado estacionario diferente.

Basado en la evolución del modelo Solow & Swan, (1956), Mankiw, Romer, & Weil, (1992) y Barro & Sala-i-Martin, (1995) se encuentra la investigación de Hongbin Li y Junsen Zhang, (2007), que estudió las provincias de China, bajo un modelo de crecimiento económico de una economía abierta como el Shioji, (2001), donde la regresión de crecimiento es la siguiente:

(Ecuación 1)

$$\left(\log\frac{y_t}{y_{t-1}}\right) = y_1 \log y_{t-1} + y_2 BR_t + X_t y_3 + \epsilon_t,$$

donde $\left(\log\frac{y_t}{y_{t-1}}\right)$ es la tasa de crecimiento real del PIB per cápita del tiempo (t-1) al tiempo (t), (\log_{t-1}) es el logaritmo del PIB per cápita real rezagado, (BR_t) , es la tasa de natalidad en el tiempo (t), mientras (X_t) son otras variables que determinan el estado estacionario; y, (\in) es el término de error.

Según Levine & Renelt (1992), cuando se genera una investigación de crecimiento empírico se usan diferentes variables explicativas. Con el fin de establecer las variables explicativas se analizan algunas investigaciones, entre las cuales se puede mencionar a Solow & Swan, (1956); Mankiw, Romer, & Weil, (1992), quienes tienen cuatro variables en común que son: el nivel inicial del PIB per cápita real, tasa de natalidad, la inversión como porcentaje del PIB, y la tasa de inscripción de estudiantes en la escuela secundaria. Sin embargo,

la praxis de investigación empírica difiere en el número de variables demográficas e institucionales que se incluyen en los modelos en función de la definición del problema.

Según Brander & Dowrick, (1994) e Islam, (1995), se estima la regresión de crecimiento como un panel de datos. Donde se divide el total del periodo en intervalos de 4 a cinco 5 años. Y las variables explicativas son de niveles iniciales de cada intervalo o son de promedios de dichos intervalos correspondientes a los 4 o 5 años. Por ejemplo, el intervalo del periodo de cinco años es 1978 – 1983, donde el PIB per cápita real es al nivel de año 1978; la tasa de natalidad, inscripción de la población de estudiantes en la escuela secundaria, la inversión como porcentaje del PIB, el gasto del gobierno, la tasa de crecimiento de la fuerza laboral y ratio dependiente es el promedio de 5 años.

Sin embargo, los autores optaron por omitir la tasa de crecimiento de la fuerza laboral ya que investigaciones previas realizadas por Bloom & Williamson (1998) y Kellye & Schmidt (2005), muestran que la estructura de la población y específicamente la fuerza laboral, pueden tener un efecto sobre el crecimiento económico y ésta está correlacionada con la tasa de natalidad. Incluir dicha variable puede reducir el poder explicativo de la tasa de natalidad. También, variables institucionales como el gasto de gobierno fue omitido, sus resultados mostraban que no tenía significancia en su modelo.

En el modelo de Li & Zhang (2007), si bien existe una política de natalidad única ("Han Chinese"), la tasa de crecimiento de la población difiere entre provincias; esto se debe a que a las minorías se las ha permitido tener más de un hijo. Así provincias con mayor participación de minorías ostentan tasas de crecimiento poblacional más altas que las provincias con menor participación de las minorías.

Adicionalmente, si se controla debidamente las variables necesarias que pueden correlacionarse tanto con la proporción de las minorías y con el nivel de inversión en educación y salud, no debería tener efecto parcial en el crecimiento económico; y, tampoco debería estar correlacionado con factores no observados que afecten al crecimiento de la población y crecimiento económico.

Análisis empírico

En función de la revisión teórica realizada, se realizó una estimación basada en el modelo de Hongbín Li y Junsen Zhang (2007). De esta manera se plantea un modelo reducido que explique el crecimiento económico e identifique si las políticas de control de natalidad tienen un efecto significativo.

Al igual que Li & Zhang, (2007), la investigación se realizó con un modelo de datos de panel. Se utiliza esta técnica por dos motivos: el primero es porque se cuenta con información de las variables de los distintos agentes en varios períodos de tiempo. Y el segundo, es que permite eliminar en el componente del error las características no observadas de los sujetos que podrían afectar la variable objetivo (Li & Zhang, 2007).

En este caso, se requiere información de distintos países en varios periodos de tiempo. Para esto se definieron los países en función de la implementación de políticas de natalidad. Para China, Corea del Sur y México se encontró evidencia de la aplicación de políticas, siendo estos el grupo objetivo.

China aplicó una política de control de natalidad en 1979, llamada política del Hijo Único. Bajo esta política, cada familia tenía permitido tener solo un hijo, y aquellos que tenían dos o más hijos eran penalizados con multas, o las mujeres eran presionadas a proceder a un aborto y forzadas a una esterilización después del parto. En el 2013, la Asamblea Popular de China permitió a las familias tener un segundo hijo si uno de los padres no tenía hermanos. Sin embargo, lo mencionado no se hizo vigente ya que los niños nacidos desde ese entonces no tenían identidad y por ende no podían acceder

a sus derechos de salud y educación; y las familias seguían siendo multadas. A finales del año 2015 el derecho a tener un segundo hijo se hizo vigente sin problema alguno (Rosenberg, 2011).

Corea del Sur no quería que una sobrepoblación afectara al crecimiento económico, por lo que en 1961 el gobierno aplicó una política de planificación familiar. La política estaba dirigida a programas de esterilizaciones voluntarias pero con un incentivo monetario a cambio. También, distribuían de forma gratuita dispositivos para el control de la natalidad. Años después, en 1973 legalizaron el aborto. Pero años más tarde, en 1996 el gobierno dio por finalizada oficialmente la política debido a que la tasa de natalidad se encontraba ubicada por debajo del nivel de reemplazo de la población que en ese entonces era de 2,1 hijos por mujer (SaKong & Koh, 2010).

Por otro lado, México implementó una política inclinada a reducir la tasa de crecimiento demográfico urbano en 1973 y cuatro años más tarde comenzó a aplicarse la misma política en áreas rurales. El problema que planteaba el gobierno eran las altas tasas de fecundidad y el poco uso de métodos anticonceptivos por lo que se fijaron metas mensuales en cuanto a la esterilización femenina y a la colocación de dispositivos intrauterinos (DIU) (Alba & Potter, 1986).

Con los países mencionados que aplicaron las políticas de control de natalidad, se usó la base de datos publicada por el Banco Mundial. Se verificó el PIB per cápita de todos los países y se eliminaron aquellos que no poseían datos de dicha variable. Por otro lado, se observó la disponibilidad de datos de las demás variables relevantes para la investigación y se encontró una ausencia de datos de la variable educación antes de 1971, por lo que se arrancó la investigación a partir de ese año. También, se tuvo que omitir a Corea del Sur ya que no se encontraron datos de dicha variable, la cual es relevante en el análisis.

Una vez conocido el grupo de países de observación que cuentan con una política de control de natalidad, se necesita un grupo de países de control que no estén afectados por la misma. Así, se puede comparar la diferencia entre el grupo de observación y el grupo de control antes y después de la política; con el fin de poder determinar el impacto neto. El grupo de control ayuda a medir o identificar el impacto de otras variables que podrían estar afectando al grupo de observación pero que son diferentes a la política de control de natalidad estudiado en este caso (Martin, 1985).

Se tomó los dos países base de esta investigación (China y México) y se calculó el promedio del PIB per cápita de cada uno de estos países un año antes de la implementación de su política de control de natalidad. Como se podrá ver en el anexo 1, para China se calculó el promedio desde 1971 a 1978, ya que como se mencionó anteriormente su política fue aplicada en 1979. Por otro lado, para México el promedio fue de 1971 a 1972, ya que su política fue aplicada en 1973. Conocidos los promedios de los países base se prosiguió a calcular el promedio de todos los países con la información disponible en el banco mundial de 1971 a 1978 y de 1971 a 1972 respectivamente. A continuación, se dividió al promedio de cada país por el promedio del país base para observar su similitud. Se prosiguió a hacer una selección del grupo de control basados en análisis de datos de similitud. Así, se observó que los países que tenían un promedio similar a China eran Burundi, Malawi y Nepal. Mientras que para México, los países que tenían un promedio similar eran Gabón, Singapur, Sudáfrica, Seychelles y Uruguay. Una vez observados los datos de las variables explicativas, se escogieron a Malawi y Uruguay por la disponibilidad de datos, como se presenta en el anexo 2.

Siguiendo la teoría, la variable dependiente para el análisis es el crecimiento del PIB per cápita $(\Delta \frac{PIB}{L})$ que se explica por las siguientes variables independientes, donde su estadística descriptiva se podrá observar en el anexo 3 para cada país:

- La tasa de natalidad (TsNat), conocida como la tasa bruta que calcula la cantidad de personas que nacieron con vida por cada mil habitantes en el periodo de un año.
- La formación bruta de capital como porcentaje del PIB (Fbk), conocido anteriormente como inversión interna bruta. Esta abarca todo lo que se refiere a las variaciones netas de los inventarios más los desembolsos de la economía en concepto de adiciones a los activos fijos (Banco Mundial, 2016).
- La tasa de inscripción escolar del nivel secundario (*TsIns*), la cual es el porcentaje de toda la población en edad oficial de cursar la escuela secundaria. Es decir, comprende la cantidad total de estudiantes inscritos en educación secundaria, independientemente de su edad.
- Y, una dummy que recoge el efecto de las políticas de control de natalidad, 0 para cuando no haya política y 1 cuando se tiene evidencia de la existencia de una política de control de natalidad (*Dpolit*).

La ecuación a estimar es la siguiente:

(Ecuación 2)

$$\Delta \frac{PIB}{L} = B_0 + B_1 TsNat + B_2 Fbc + B_3 TsIns + B_4 Dpolit + u$$

Una vez definidas las variables, se utilizaron 41 datos de cada variable y se procesaron en el programa Stata. Como primer paso se realizaron pruebas de endogeneidad mediante el test de Hausman, (1978); el cual parte de la hipótesis nula de que si no existe endogeneidad, las estimaciones de datos de panel por efectos aleatorios y por efectos fijos deberían ser muy similares, ya que las dos estimaciones son consistentes. En este sentido, cualquier diferencia se explicaría solo por el tamaño de la muestra. Sin embargo, en caso de existir endogenidad la diferencia entre las dos estimaciones debería ser sistemática.

Al correr la prueba de Hausman se obtuvo los siguientes resultados:

Tabla 1. Prueba de Hausman.

Variables	Coeficiente por efectos fijos	Coeficiente por efectos aleatorios
Tasa de Natalidad (TsNat)	-0,1726977	-0,1811926
Formación Bruta de Capital (Fbc)	0,2044567	0,2193892
Tasa de Inscripción en la escuela secundaria (TsIns)	-0,0564719	-0,0629789
Dummy de política (Dpolit)	1,620705	-0,5166123
$chi^2(4)=$ Prob> $chi^2=$	2,84	
Prop>cni =	0,5857	

Tomado de: Prueba de Hausman basada en (Hausman, 1978), con datos de Banco Mundial, (2016)

Se puede observar en el test de Hausman que no se rechaza la hipótesis nula, es decir, no existe endogeneidad, y se puede utilizar la estimación de efectos aleatorios que es eficiente; como se presenta en la tabla 2.

Tabla 2. Resultados por efectos aleatorios.

Variable Tasa Crecimiento PIB per cápita (TsCrPibCap)	Coeficiente
Tasa de Natalidad (TsNat)	-0,1811926
	(-0,0641709)***
Formación Bruta de Capital (Fbc)	0,2193892
	(0,0531187)***
Tasa de Inscripción en la escuela	-0,0629789
secundaria (Tslns)	(0,0327642)**
Dummy de política (Dpolit)	-0,5166123
	(-0,7969689)*
Constante (_cons)	6,414362
	(-4,447856)*
R ² (overall)	0,3412
Numero de observaciones	164
Número de grupos	4

Tomado de: Banco Mundial, (2016)

Nota: Error estándar reflejado entre paréntesis; * p<1; **p<0,05; *** p<0,00

En los resultados se observa que cuando la tasa de natalidad aumenta el crecimiento del PIB per cápita disminuye. Dicho efecto es coherente con la teoría ya que como se mencionó anteriormente, si aumenta la tasa de natalidad, que puede ser expresada como más población, disminuye el ingreso, porque el capital disponible debe ser más repartido sobre la población que está trabajando. También el capital humano debe ser más repartido, implicando que un aumento del crecimiento de la población disminuye la productividad total (Mankiw, Romer, & Weil, 1992).

Los resultados indican que cuando la formación bruta de capital aumenta, el crecimiento del PIB per cápita aumenta. Este resultado se puede explicar con la teoría antes mencionada de Solow, Mankiw, Romer y Weil, si la inversión expresada como ahorro aumenta, hace que el ingreso sea mayor, el cual a cambio lleva a un mayor nivel de capital humano. En este sentido, el aumento del ahorro incrementa la productividad.

Por otro lado, los datos nos dan a conocer que, cuando la tasa de inscripción escolar al nivel secundario aumenta, la tasa de crecimiento del PIB per cápita disminuye. Se esperaría que el efecto rezagado sea positivo, es decir un aumento hoy en las inscripciones del nivel secundario lleve a un incremento del PIB per cápita en el futuro. Pero en el corto plazo, un aumento de la inscripción en la escuela secundaria implica que parte de la población que podría estar produciendo en actividades básicas deja de trabajar para estudiar; por lo que el crecimiento del PIB disminuye. Por el supuesto de exogeneidad estricta el uso de rezagos es limitado

Por último, la dummy que representa la política de control de natalidad no es estadísticamente significativa. Esto indicaría que las políticas de control de natalidad no tienen efecto sobre el crecimiento económico. Sin embargo, el signo del coeficiente es negativo lo que representa que si fuese significativa constituiría un limitante para el crecimiento económico.

CONCLUSIONES Y RECOMENDACIONES

Esta investigación examinó el impacto de las políticas de control de natalidad sobre el crecimiento económico, usando un panel de datos de 4 países. Según los resultados obtenidos, se podría decir que cuando aumenta la tasa de natalidad en 1%, porcentaje en que disminuya la tasa de crecimiento del PIB per cápita es de 0.19%. Además, cuando la formación bruta de capital aumenta en 1%, el crecimiento del PIB per cápita aumenta alrededor del 0.21%. Y, cuando aumenta la tasa de inscripción escolar en el nivel secundario en 1%, tentativamente la tasa de crecimiento del PIB per cápita disminuye en 0.07%.

El resultado más relevante de esta investigación es la de la variable que representa la política de control de natalidad que muestra que no es estadísticamente significativa. Es decir, las políticas de control de natalidad aplicadas en los países investigados, no tuvieron un efecto estadísticamente significativo sobre el crecimiento económico. La estimación econométrica permite reforzar lo afirmado en el experimento BAUCHUE, la reducción acelerada de la natalidad no es solución para resolver problemas económicos. (Rodgers, Hopkins, & Wery, 1977)

Gracias al empleo de la técnica de datos de panel, se puede eliminar todas las características no observadas que se mantienen constantes en los países. Se reduce la posibilidad de fallo al asignar los países de control. Sin embargo, la falta de información es un limitante para tener un modelo robusto que arroje conclusiones menos refutables. Por otro lado, se podría explicar que el resultado obtenido acerca de la política de control de natalidad es que, el modelo realizado es un panel de datos, y como se mencionó anteriormente el error tiene un componente que representa características no observadas de los países que pueden afectar al crecimiento económico y dichas características, no cambian en el tiempo.

Se recomendaría hacer la misma investigación con más países que hayan aplicado políticas de control de natalidad y que actualmente no tienen disponibilidad de datos; con la finalidad de obtener resultados más robustos.

También, se recomendaría realizar la misma investigación con un modelo dinámico. Ya que este tipo de modelo toma en cuenta los rezagos en el tiempo.

Los rezagos son utilizados por razones tecnológicas, psicológicas e institucionales que ayudan observar los cambios en el nivel de las variables a utilizar en el corto y largo plazo Gujarati & Porter, (1999). Sin embargo, por el supuesto de exogeneidad estricta el uso de los mismos ha sido limitado.

REFERENCIAS

- Alba, F., & Potter, J. (1986). Poblacion y Desarrollo en Mexico. Una sintesis de la experiencia reciente. En *Estudios demograficos y urbanos* (págs. 7-37).
- Barlow, R. (1994). Birth Rate and Economic Growth: Some More Correlations .

 En *Population and Development Review 20* (págs. 153-165).
- Barro, R., & Becker, G. (1989). Fertily Choice in a Model of Economic Growth. En *Econometrica 57:2* (págs. 481-502).
- Barro, R., & Sala-i-Martin, X. (1995). Economic Growth.
- Barzelatto, J. (1998). Desde el control de la natalidad hacia la salud sexual y reproductiva: la evolucion de un concepto a nivel internacional. En Saúde reproductiva na América Latina e no Caribe: temas e problemas (págs. 39-49).
- Becker, G. (1960). An economic analysis of fertility. En *Demographic and* economic change in developed countries (págs. 209-240). Columbia University Press.
- Becker, G., & Lewis, G. (1973). On the interaction between the Quantity and Quality of Children . En *Journal of Political Economy 81:2* (págs. 279-288).
- Becker, G., Murphy, K., & Taruma, R. (1994). Human capital, fertility and economic growth. En T. U. Press, *Human Capital: A Theorical and Empirical Analysis with Special Reference to Education* (págs. 323-350).
- Bloom, D., & Williamson, J. (1998). Demographic Transitions and Economic Miracles in Emerging Asia. En World Bank Economic Review 12:3 (págs. 419-455).
- Bodrova, V. (1973). Sobre la politica demografica de algunos paises socialistas de Europa.
- Boserup, E. (1981). *Population and Technical Change:A Study of Long-term trends*. Chicago: University of Chicago Press.

- Brander, J. A., & Dowrick, S. (1994). The Role of Fertility and Population in Economic Growth: Empirical Results from Agreggate Cross-national Data. En *Journal of Population Economics* 7 (págs. 1-25).
- Coale, A. (1986). Population Trends and Economic Development. En *World Population and US Policy: The Choice Ahead.* New York: Jane Menken.
- Coale, A., & Hoover, E. (1958). *Population Trends and Economic Development in Low Income Countries*. NJ: Princeton University Press.
- Enke, S. (1966). The Economic Aspects of Slowing Population Growth. En *The Economic Journal*, *76* (301) (págs. 44-56).
- Fucaraccio, A. (1994). Temas de Poblacion y Desarrollo. En *Politicas de Centroamerica, El Caribe y Mexico.*
- Galor, O., & Weil, D. (1993). *The gender gap, fertility and growth.* Obtenido de National Bureau of Economic Research: http://www.nber.org/papers/w4550
- Galvis, L., & Meisel, A. (2001). El crecimiento economico de las ciudades colombianas y sus determinantes, 1973-1998. En Coyuntura Economica (págs. 31-32).
- Gujarati, D., & Porter, D. (1999). Essentials of econometrics.
- Hausman, J. A. (1978). Specification tests in econometrics. . En *Econometrica:*Journal of the Econometric Society (págs. 1251-1271).
- Hazledine, T., & Moreland, S. R. (1977). Population and Economic Growth: A World Cross-section Study.
- Islam, N. (1995). Growth Empirics: A Panel Data Approach. En *The Quarterly Journal of Economics* 110 (págs. 1127-1170).
- Kelley, A. (1988). Economic consequences of population change in the Third World. En *Journal of Economic Literature*. (págs. 1685-1728).
- Kellye, A. C., & Schmidt, R. M. (2005). Evolution of Recent Economic Demographic Modeling: A Synthesis. En *Journal of Population Economics* 18 (págs. 275-300).
- Levine, R., & Renelt, D. (1992). A Sensitivity Analysis of Cross Country Growth Regressions. En *American Economic Review 82* (págs. 942-963).

- Li, H., & Zhang, J. (2007). Do high birth rates hamper economic growth? En *The Review of Economics and Statistics* 89 (págs. 110-117).
- Lucas, R. (1988). On the mechanics of economic development. En *Journal of monetary economics 22:1* (págs. 3-42).
- Mankiw, G., Romer, D., & Weil, D. (1992). A Contribution to the Empirics of Economic Growth. En *Quarterly Journal of Economics* 107:2 (págs. 407-437).
- Martin, F. (1985). La investigacion evaluativa: una perspectiva experimentalista. En *Reis* (29) (págs. 129-141).
- McNicoll, G. (1984). Consequenses of Rapid Population Growth: An Overview and Assessment. En *Population and Development Review 10* (págs. 537-544).
- Pritchett, L. (1994). Desired fertility and the impact of population policies. En Population and Development Review (págs. 1-55).
- Rodgers, G., Hopkins, M., & Wery, R. (1977). Population, Employment and Inequality, Bachue Philipines: OIT (Organizacion Internacional del Trabajo).
- Romer, P. (1986). Increasing Returns and Long-Run Growth. En *Journal of Political Economy 94:5* (págs. 1002-1037).
- Romer, P. (1986). *Increasing Returns and Long-Term Growth.* Obtenido de http://www.jstor.org/stable/1833190?seq=1#page_scan_tab_contents
- Romer, P. (1989). *Capital Acumulation in the Theory of Long Run Growth.*Cambridge, Harvard University Press.
- Rosenberg, M. (2011). *China's One Child Policy*. Obtenido de http://myclasses.naperville203.org/staff/jjhstriumph/heffernan/Shared%20 Documents/Asia%20Handouts/China's%20One%20Child%20Policy%20 Article.pdf
- SaKong, I., & Koh, Y. (2010). *The Korean Economy Six Decades of Growth and Development*. Obtenido de https://www.kdevelopedia.or.kr/mnt/idas/asset/2012/11/22/DOC/PDF/042 01211220123410073858.pdf

- Shioji, E. (2001). Public Capital and Economic Growth: A Convergence Approach. En *Journal of Economic Growth 6* (págs. 205-227).
- Simon, J. L. (1989). On Aggregate Empirical Studies Relating Population Variables to Economic Development. En *Population and Development Review 15* (págs. 323-332).
- Solow, R. M., & Swan. (1956). A Contribution to the Theory of Economic Growth. En *Quarterly Journal of Economics (LXX)* (págs. 65-94).
- Temple, J. (1999). The new Growth Evidence. En *Journal of Economic Literature 37:1* (págs. 112-156).
- Urzua, R. (1979). Desarrollo y la población en América Latina. Obtenido de http://repositorio.cepal.org/handle/11362/1692
- Wang, P., Yip, C. K., & Scotese, C. (1994). Fertility Choice and Economic Growth: Theory and Evidence. En R. 76:2.
- Watkins, S., & Walle, E. (1983). Nutrition, mortality, and population size: Malthus court of last resort. En *The Journal of Interdisciplinary History* 14:2 (págs. 205-226).

ANEXOS

Anexo 1

Tabla 1.0 Cálculo del promedio del PIB per cápita (US\$ a precios constantes de 2005) de cada uno de los países en análisis un año antes de la implementación de su política de control de natalidad

	China						México				
Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita
1960	121,2868719	1978	195,0109738	1996	846,2117519	1960	3299,03018	1978	5848,540372	1996	6786,960572
1961	89,07556534	1979	206,9991517	1997	915,4668891	1961	3354,50113	1979	6256,777864	1997	7129,914496
1962	83,40025692	1980	220,4485463	1998	977,7514118	1962	3400,697266	1980	6675,399296	1998	7338,33559
1963	89,67586115	1981	229,0539604	1999	1043,182833	1963	3561,538672	1981	7103,170535	1999	7413,442908
1964	103,6529585	1982	246,1473087	2000	1122,258652	1964	3861,506945	1982	6914,404257	2000	7689,098612
1965	118,4200974	1983	268,9472604	2001	1206,61317	1965	4007,29242	1983	6494,690945	2001	7536,161956
1966	127,4875592	1984	305,7250003	2002	1307,40955	1966	4120,290114	1984	6599,534684	2002	7448,260316
1967	117,1696415	1985	342,2028736	2003	1429,550411	1967	4227,700258	1985	6639,528868	2003	7461,058846
1968	109,4698952	1986	366,9762322	2004	1564,401996	1968	4484,565977	1986	6265,484591	2004	7687,28523
1969	124,5115202	1987	402,9699202	2005	1731,125235	1969	4495,813196	1987	6256,565524	2005	7823,825498
1970	144,6172363	1988	441,2650943	2006	1939,710775	1970	4641,106186	1988	6209,066056	2006	8113,651753
1971	150,5477027	1989	452,2080526	2007	2202,885131	1971	4667,658296	1989	6339,95855	2007	8264,91637
1972	152,4752383	1990	462,7287419	2008	2402,782664	1972	4897,072605	1990	6525,852461	2008	8275,809458
1973	160,8066873	1991	498,355981	2009	2611,160061	1973	5122,203006	1991	6661,084027	2009	7788,271761
1974	161,1415031	1992	562,3906846	2010	2870,052942	1974	5257,566731	1992	6759,148024	2010	8084,629
1975	172,0939538	1993	633,5986862	2011	3121,969744	1975	5399,486353	1993	6888,170549	2011	8307,686996
1976	166,7403495	1994	708,4252413	2012	3344,544711	1976	5480,122527	1994	7068,21803	2012	8532,347803
1977	176,9842023	1995	777,3287627			1977	5511,821054	1995	6531,923269		
Promedio	134,9772671					Promedio	4078,367173				

Tabla 1.1 Cálculo del promedio del PIB per cápita (US\$ a precios constantes de 2005) de cada uno de los países de control, promedio del PIB per cápita similar a China un año antes de la implementación de su política de control de natalidad.

	Burundi						Malawi				
Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita
1960	147,0058456	1978	196,745214	1996	157,5319333	1960	141,7733683	1978	233,8572389	1996	218,6739524
1961	124,4038838	1979	194,9905051	1997	153,1995577	1961	149,1245815	1979	236,4412686	1997	221,4926882
1962	133,1412514	1980	191,783788	1998	158,5327255	1962	146,6139311	1980	230,4034914	1998	223,756249
1963	135,9975785	1981	209,3647517	1999	154,5914324	1963	141,1323084	1981	212,5205773	1999	224,0204284
1964	141,5990819	1982	201,4762206	2000	150,3041686	1964	141,3953704	1982	212,6816871	2000	221,3448033
1965	144,0095109	1983	203,0211557	2001	149,6914792	1965	156,7380836	1983	214,9576039	2001	204,8739547
1966	147,0775069	1984	197,2734804	2002	151,9410474	1966	173,1550999	1984	219,0880427	2002	203,0528121
1967	163,2016694	1985	213,6221612	2003	145,3998641	1967	181,1577949	1985	219,4445377	2003	208,7603087
1968	158,6840686	1986	213,3486934	2004	147,4267806	1968	173,1524595	1986	207,455604	2004	213,1355781
1969	152,8823283	1987	217,5494065	2005	143,7835295	1969	178,4700717	1987	198,3533779	2005	213,1566745
1970	182,0429	1988	220,9601779	2006	146,3976553	1970	174,3213045	1988	192,7112675	2006	211,2941301
1971	184,3514476	1989	217,0172414	2007	148,1409195	1971	196,6696377	1989	185,6453382	2007	224,496022
1972	170,612558	1990	218,3405568	2008	150,2787084	1972	202,5851897	1990	189,1159752	2008	235,9148414
1973	180,5533999	1991	223,5131646	2009	150,2234857	1973	200,7812647	1991	201,1465436	2009	249,5512884
1974	177,2179931	1992	220,6698985	2010	150,7423534	1974	208,3619798	1992	184,4500065	2010	258,0577631
1975	175,8758465	1993	202,7293243	2011	151,9968084	1975	213,9698452	1993	201,4760435	2011	261,5449813
1976	186,4135205	1994	191,4962229	2012	153,1426988	1976	217,3131793	1994	179,9064708	2012	258,9560185
1977	203,4079639	1995	173,5619642			1977	220,3822737	1995	207,6352705		
Promedio	163,4328194					Promedio	181,6292096				
Desviación	121%					Desviación	135%				

Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita
1960	177,7691932	1978	193,6688102	1996	271,5940195
1961	178,0791549	1979	193,8653123	1997	278,2936819
1962	178,3289603	1980	185,1317809	1998	279,8603919
1963	178,4772827	1981	196,0324454	1999	285,5806558
1964	188,4160925	1982	198,7847733	2000	296,8240863
1965	182,6539068	1983	188,4350608	2001	304,8779287
1966	191,7404927	1984	201,9509853	2002	299,574268
1967	184,9937269	1985	209,5019209	2003	306,0261469
1968	182,4839506	1986	214,1682713	2004	315,2608726
1969	186,7240661	1987	212,9704594	2005	321,4550186
1970	187,5680774	1988	224,2381983	2006	327,8379018
1971	181,4512047	1989	228,5753976	2007	334,8942034
1972	183,1587922	1990	233,4695518	2008	351,2854436
1973	178,4058304	1991	242,2089348	2009	363,121261
1974	185,6377219	1992	245,7828192	2010	376,3422096
1975	184,2765381	1993	248,7094754	2011	384,7718723
1976	188,2083389	1994	262,2501821	2012	398,7730724
1977	189,6592894	1995	264,4694281		
Promedio	184,3000753				

137%

Desviación

Tabla 1.2 Cálculo del promedio del PIB per cápita (US\$ a precios constantes de 2005) de cada uno de los países de control, promedio del PIB per cápita similar a México un año antes de la implementación de su política de control de natalidad.

	Gabón					Seychelles					
Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita
1960	2790,917812	1978	7903,178593	1996	7335,88769	1960	3313,547237	1978	6521,368589	1996	9697,490221
1961	3171,644838	1979	7755,260344	1997	7561,02602	1961	3064,395027	1979	7446,050254	1997	10730,79843
1962	3370,532983	1980	7763,167401	1998	7628,722467	1962	3235,09693	1980	7040,471127	1998	11407,26411
1963	3531,410986	1981	7959,640553	1999	6776,523196	1963	3473,555875	1981	6389,850704	1999	11394,78027
1964	3639,506715	1982	7521,029217	2000	6488,289522	1964	3588,142184	1982	6255,805801	2000	11464,53864
1965	3878,568364	1983	7741,216564	2001	6469,43565	1965	3462,045218	1983	6094,493437	2001	11194,36377
1966	3978,658549	1984	8107,356745	2002	6301,460262	1966	3846,065628	1984	6318,489386	2002	10991,98843
1967	4058,482392	1985	7710,144066	2003	6307,743863	1967	3771,612158	1985	6969,588131	2003	10457,32032
1968	4072,086277	1986	7444,24989	2004	6244,09233	1968	3959,469535	1986	6908,374094	2004	10196,18191
1969	4308,506653	1987	6001,636606	2005	6281,954684	1969	3866,390055	1987	7162,503564	2005	11060,7976
1970	4587,689325	1988	6589,199352	2006	6205,712925	1970	4112,42198	1988	7494,660183	2006	11896,0496
1971	4961,261066	1989	6959,081737	2007	6394,289982	1971	4657,011474	1989	8269,116348	2007	13026,67952
1972	5421,74395	1990	7124,092451	2008	6303,803534	1972	4841,916489	1990	8770,232859	2008	12465,92763
1973	5864,706849	1991	7358,72943	2009	5974,684589	1973	5168,224411	1991	8916,161474	2009	12279,61123
1974	8026,728249	1992	6943,673114	2010	6223,145276	1974	5129,71189	1992	9434,417348	2010	12651,43874
1975	9377,311699	1993	7029,545594	2011	6506,888733	1975	5192,000164	1993	9873,80185	2011	14016,45794
1976	12451,7154	1994	7102,083055	2012	6709,073278	1976	5927,34068	1994	9634,087036	2012	14269,04104
1977	10647,12239	1995	7264,164365			1977	5466,943621	1995	9379,577044		
Promedio	3982,385378					Promedio	3783,974599				
Desviación	98%					Desviación	93%				

	Singapur						Sudáfrica				
Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita
1960	2529,860862	1978	8462,532739	1996	22354,54985	1960	3543,536948	1978	5265,339306	1996	4853,369414
1961	2645,740278	1979	9143,507238	1997	23408,92409	1961	3566,236243	1979	5346,161318	1997	4866,91111
1962	2756,759313	1980	9933,609368	1998	22123,37812	1962	3682,024145	1980	5568,808	1998	4777,588133
1963	2956,345478	1981	10478,75492	1999	23285,0741	1963	3853,995112	1981	5726,408436	1999	4775,561317
1964	2775,483576	1982	10747,85642	2000	24921,23855	1964	4062,507046	1982	5563,244944	2000	4854,387532
1965	2914,648718	1983	11515,22673	2001	24027,14972	1965	4325,435898	1983	5322,338692	2001	4884,465453
1966	3152,17499	1984	12294,30896	2002	24811,25175	1966	4420,110915	1984	5450,452333	2002	4994,411899
1967	3462,057148	1985	12192,88389	2003	26297,10073	1967	4637,829624	1985	5246,403721	2003	5076,972805
1968	3866,271153	1986	12366,51257	2004	28449,42425	1968	4728,50547	1986	5114,458161	2004	5239,97202
1969	4331,246779	1987	13492,40799	2005	29869,63276	1969	4846,387997	1987	5093,183186	2005	5444,100099
1970	4856,579733	1988	14616,53477	2006	31514,37121	1970	4991,177236	1988	5181,942077	2006	5671,178548
1971	5344,387442	1989	15638,99623	2007	32982,98209	1971	5086,07254	1989	5188,808041	2007	5893,540094
1972	5955,956032	1990	16553,52037	2008	31832,70615	1972	5053,109629	1990	5068,071528	2008	5996,844791
1973	6496,196487	1991	17164,7503	2009	30700,47142	1973	5165,832537	1991	4914,11697	2009	5820,682085
1974	6802,217415	1992	17837,39566	2010	34758,40433	1974	5360,529634	1992	4709,796615	2010	5910,694854
1975	7012,578064	1993	19398,20614	2011	36102,75023	1975	5332,769854	1993	4668,266735	2011	6010,440853
1976	7433,226363	1994	20853,58217	2012	36110,12912	1976	5336,206277	1994	4715,791063	2012	6051,34136
1977	7879,737557	1995	21651,09419			1977	5220,146699	1995	4757,982797		
Promedio	3657,500885					Promedio	4368,994523				

Desviación

107%

Desviación

90%

	Uruguay									
Año	PIB per cápita	Año	PIB per cápita	Año	PIB per cápita					
1960	3151,804265	1978	3818,933633	1996	4855,677085					
1961	3188,860851	1979	4027,669345	1997	5233,716843					
1962	3099,83039	1980	4234,191563	1998	5435,111513					
1963	3068,290717	1981	4272,021959	1999	5301,997368					
1964	3107,482785	1982	3830,041738	2000	5180,950587					
1965	3106,004658	1983	3414,337694	2001	4972,921484					
1966	3167,820326	1984	3353,660676	2002	4587,39718					
1967	3021,774573	1985	3381,067691	2003	4627,243729					
1968	3051,474785	1986	3655,708213	2004	4861,121242					
1969	3207,005229	1987	3923,405749	2005	5221,673186					
1970	3264,595349	1988	3956,698384	2006	5427,425142					
1971	3246,579258	1989	3974,646411	2007	5768,314574					
1972	3200,12435	1990	3959,596187	2008	6162,847727					
1973	3208,17953	1991	4070,927156	2009	6286,104002					
1974	3298,74729	1992	4362,170461	2010	6791,050415					
1975	3492,34228	1993	4445,390738	2011	7264,808954					
1976	3615,443875	1994	4734,262137	2012	7505,786591					
1977	3648,018892	1995	4632,233514							
Promedio	3144,742118									
Desviación	77%									

Nota: Se comparan el promedio del PIB per cápita del país de análisis un año antes de su política de control de natalidad con el país control. Una vez vista la desviación promedio se eligieron aquellos que poseen disponibilidad de datos de todas las variables. Tomado del Banco Mundial Data from Database: Indicadores del desarrollo mundial. 2015.

Mejor opción por disponibilidad de datos.

Anexo 2

Tabla 2.0 Disponibilidad de datos de países analizados

Disponibilidad de datos de 1971 a 2011

	PIB per cápita	Tasa de natalidad	Formación bruta de capital	Tasa de inscripción en el nivel secundario (%bruto)
China	D	D	D	D
Corea del Sur	D	D	D	ATP
México	D	D	D	D
Burundi	D	D	D	ATP
Malawi	D	D	D	D
Nepal	D	D	D	ATP
Gabón	D	D	D	ATP
Singapur	D	D	D	ATP
Sudáfrica	D	D	D	ATP
Seychelles	D	D	ATP	D
Uruguay	D	D	D	D

D : Disponibilidad de datos

ATP: Ausencia Total o Parcial de datos

Anexo 3

Tabla 3.0 Estadística Descriptiva de variables independientes de países analizados.

Variable	País	Promedio
Tasa de Natalidad	China	18,26195122 (0,780632656)
	México	28,93780488 (1,067367187)
	Malawi	48,37709756 (0,707490117)
	Uruguay	17,83453659 (0,302640665)
Formación Bruta de Capital	China	32,90088657 (0,9304366)
	México	20,05296267 (0,355235769)
	Malawi	20,1916657 (0,988301284)
	Uruguay	17,31532244 (0,665604821)
Tasa de Inscripción en la	China	51,79045589 (2,233256253)
escuela secundaria	México	56,63640059 (2,849313625)
	Malawi	21,01219959 (1,258831402)
	Uruguay	79,85735637 (2,384432914)

Tomado de: Banco Mundial, (2016) Nota: Error estándar entre paréntesis.